A systolic algorithm for extended GCD computation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm and Refined Bounds for Extended Gcd Computation

Extended gcd computation is interesting itself. It also plays a fundamental role in other calculations. We present a new algorithm for solving the extended gcd problem. This algorithm has a particularly simple description and is practical. It also provides reened bounds on the size of the multipliers obtained.

متن کامل

A parallel extended GCD algorithm

A new parallel extended GCD algorithm is proposed. It matches the best existing parallel integer GCD algorithms of Sorenson and Chor and Goldreich, since it can be achieved in O (n/ logn) time using at most n1+ processors on CRCW PRAM. Sorenson and Chor and Goldreich both use a modular approach which consider the least significant bits. By contrast, our algorithm only deals with the leading bit...

متن کامل

FPGA Implementation of an Extended Binary GCD Algorithm for Systolic Reduction of Rational Numbers

We present the FPGA implementation of an extension of the binary plus–minus systolic algorithm which computes the GCD (greatest common divisor) and also the normal form of a rational number, without using division. A sample array for 8 bit operands consumes 83.4% of an Atmel 40K10 chip and operates at 25 MHz.

متن کامل

GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation

A heuristic algorithm, GCDHEU, is described for polynomial GCD computation over the integers. The algorithm is based on evaluation at a single large integer value (for each variable), integer GCD computation, and a single-point interpolation scheme. Timing comparisons show that this algorithm is very efficient for most univariate problems and it is also the algorithm of choice for many problems...

متن کامل

On Schönhage's algorithm and subquadratic integer gcd computation

We describe a new subquadratic left-to-right gcd algorithm, inspired by Schönhage’s algorithm for reduction of binary quadratic forms, and compare it to the first subquadratic gcd algorithm discovered by Knuth and Schönhage, and to the binary recursive gcd algorithm of Stehlé and Zimmermann. The new gcd algorithm runs slightly faster than earlier algorithms, and it is much simpler to implement....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1987

ISSN: 0898-1221

DOI: 10.1016/0898-1221(87)90130-1